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In this work, we present a method for model-based recognition of 3d objects from
a small number of 2d intensity images taken from nearby, but otherwise arbitrary
viewpoints. Our method works by linearly combining images from two (or more)
viewpoints of a 3d object to synthesise novel views of the object. The object is
recognised in a target image by matching to such a synthesised, novel view. All
that is required is the recovery of the linear combination parameters, and since
we are working directly with pixel intensities, we suggest searching the parameter
space using a global, evolutionary optimisation algorithm combined with a local
search method in order efficiently to recover the optimal parameters and thus
recognise the object in the scene. We have experimented with both synthetic
data and real-image, public databases.

1.1. Introduction

Object recognition is one of the most important and basic problems in computer

vision and, for this reason, it has been studied extensively resulting in a plethora

of publications and a variety of different approachesa aiming to solve this problem.

Nevertheless accurate, robust and efficient solutions remain elusive because of the

inherent difficulties when dealing in particular with 3d objects that may be seen

from a variety of viewpoints. Variations in geometry, photometry and viewing angle,

noise, occlusions and incomplete data are some of the problems with which object

recognition systems are faced.

In this paper, we will address a particular kind of extrinsic variations: varia-

tions of the image due to changes in the viewpoint from which the object is seen.

Traditionally, methods that aimed to solve the recognition problem for objects with

varying pose relied on an explicit 3d model of the object, generating 2d projections

from that model and comparing them with the scene image. Such was the work

aFor a comprehensive review of object recognition methods and deformable templates in particular,
see Refs. 1–4.
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by Lee and Ragnarath.5 Although 3d methods can be quite accurate when dealing

with pose variations, generating a 3d model can be a complex process and require

the use of specialised hardware. Other methods6,7 have thus tried to capture the

viewpoint variability by using multiple views of the object from different angles,

covering a portion of, or the entirety of, the view sphere. If the coverage is dense

these methods require capture and storage of a vast number of views for each object

of interest. Quite recently, new methods have been introduced that try to alleviate

the need for many views while still working directly with 2d images.They are called

view-based methods and represent an object as a collection of a small number of

2d views. Their advantage is that they do not require construction of a 3d model

while keeping the number of required stored views to a minimum. Prime examples

are the works by Bebis et al.8 and Turk and Pentland.9

Our proposed method is a view-based approach working directly with pixel

values and thus avoids the need for low-level feature extraction and solution of the

correspondence problem such as in Ref. 8. As a result, our model is easy to construct

and use, and is general enough to be applied across a variety of recognition problems.

The disadvantage is that it may also be sensitive to illumination changes, occlusions

and intrinsic shape variations.10 We adopt a “generate and test” approach using an

optimisation algorithm to recover the optimal linear combination of views (LCV)

coefficients that synthesise a novel image which is as similar as possible to the

target image. If the similarity (usually the cross-correlation coefficient) between

the synthesised and the target images is above some threshold then an object is

determined to be present in the scene and its location and pose are defined (at least

in part) by the LCV coefficients.

In the next section we introduce the LCV and explain how it is possible to

use it to synthesise realistic images from a range of viewpoints. In section 1.3 we

present our 3d object recognition paradigm which incorporates the LCV and the

optimisation solution, and in section 1.4 we show some experimental results of our

approach on synthetic and real imagery. Finally, we conclude in section 1.5 with a

critical evaluation of our method and suggest how it could be further improved in

the future.

1.2. Linear combination of views

LCV is a technique which belongs in the general theory of the tri- and multi-focal

tensors , or Algebraic Function of View (AFoV)11 and provides a way of dealing

with variations in an object’s pose due to viewpoint changes. This theory is based

on the observation that the set of possible images of a set of landmarks points on an

object undergoing 3d rigid transformations and scaling is, under most (i.e. affine)

imaging conditions, to a good approximation embedded in a linear space spanned by

a small number of 2d images of the landmark points. With the aid of an additional

assumption as to how to combine the pixel intensities in the 2d images, it follows
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that the variety of 2d views depicting an object can be represented by a combination

of a small number of 2d basis views of the object.

Ullman and Basri12 were the first to show how line drawings or edge map images

of novel views of a 3d object could be generated via a linear combination of similar

2d basis views. More specifically, they showed that under the assumption of ortho-

graphic projection and 3d rigid transformations, 2 views are sufficient to represent

any novel view of a polygonal object from the same aspect. The proof may easily

be extended to any affine imaging condition. Thus, to a good approximation, given

two images of an object from different (basis) views I ′ and I ′′ with corresponding

image coordinates (x′, y′) and (x′′, y′′), we can represent any point (x, y) in a novel,

target view IT according to, for example:

x = a0 + a1x
′ + a2y

′ + a3x
′′

y = b0 + b1x
′ + b2y

′ + b3x
′′

. (1.1)

The target view is reconstructed from the above two equations given a set of valid

coefficients (ai, bj). Provided we have at least 4 corresponding landmark points

in all three images (IT , I ′, I ′′) we can estimate the coefficients (ai, bj) by using a

standard least squares approach. Based on a method for weighting the combination

of the intensities (or colours) of corresponding points in the basis views I ′ and I ′′,

several others have taken this concept further from its initial application to line

images and edge maps to the representation of real images IT .8,13–15

Such results suggest that it is possible to use LCV for object recognition in that

target views of an object can be recognised by matching them to a combination of

stored, basis views of the object. The main difficulty in applying this idea within a

pixel-based approach is the selection of the LCV coefficients (ai, bj). In particular, as

described in the next section, synthesis of an image of a novel view from the images of

the basis views, although straightforward, is a non-linear and non-invertible process.

1.2.1. Image synthesis

To synthesise a single, target image using LCV and two views we first need to

determine its geometry from the landmark points. In principle we can do so by

using (1.1) and n corresponding landmark points (where n > 4), and solving the

resulting system of linear equations in a least squares sense. This is straightforward

if we know, can detect, or predict the landmark points in image IT . Such methods

may therefore be useful for image coding and for synthesis of target views of a known

object.13,14 For pixel-based object recognition in which we wish to avoid feature

detection a direct solution is not possible, but we instead use a powerful optimisation

algorithm to search for and recover the LCV coefficients for the synthesis.

Given the geometry of the target image IT , in a pixel-based approach we need

to synthesise its appearance (colour, texture and so on) in terms of the basis images

I ′ and I ′′. Since we are not concerned here with creation of a database of basis

views of the objects of interest, we may suppose that a sparse set of corresponding
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landmark points (x′(j), y′(j)) and (x′′(j), y′′(j)) may be chosen manually and offline

in images I ′ and I ′′ respectively and used to triangulate the images in a consistent

manner. An illustration of the above can be seen in Fig. 1.1.

(a) (b)

(c) (d)

Fig. 1.1. Example of real data from the CMU PIE database. The two basis views (a) and (b)
and the target image (c). The synthesised image (d) is at the correct pose identified by our
algorithm. Note that in (d) the face is missing some information (around the ears for example).

This is because these areas do not appear in both basis views due to self-occlusion and cannot be
modelled by the two images alone.

Given a set of hypothesised landmark points (x(j), y(j)) in the target image

we can, to a good approximation, synthesise the target image IT as described in

Refs. 10,13,16 from a weighted linear combination:

IT (x, y) = w′I ′(x′, y′) + w′′I ′′(x′′, y′′) + ǫ(x, y) = IS(x, y) + ǫ(x, y), (1.2)

in which the weights w′ and w′′ my be calculated from the LCV coefficients to form

the synthesised image IS . Essentially this relies on the fact that, in addition to the

multi-view image geometry being to a good approximation affine, the photometry

is to a good approximation affine or linear.17 The synthesis essentially warps and

blends images I ′ and I ′′ to produce IS . It is important to note therefore that (1.2)

applies at all points (pixels) (x, y), (x′, y′) and (x′′, y′′) in images IS , I ′ and I ′′ with

the dense correspondence defined by means of the LCV equations (1.1) and a series

of piecewise linear mappings18 within each triangle of the basis images. If (x′, y′)

and (x′′, y′′) do not correspond precisely to pixel values, bilinear interpolation is

used.13,14 The same idea may be extended to colour images by treating each spectral

band as a luminance component (e.g. IR, IG, IB).



May 15, 2007 6:32 World Scientific Review Volume - 9.75in x 6.5in ObjectRecognitionLCV2

Evaluation of linear combination of views for object recognition 5

1.3. The recognition system

In principle using the LCV for object recognition is easy. All we have to do is

find the LCV coefficients in an equation such as (1.1) which will optimise the sum

of squared errors ǫ from (1.2) and check if it small enough, or our synthesised and

target images IS and IT are sufficiently similar, to enable us to say that they match.
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Fig. 1.2. Example of a synthetic target image used for testing (a). The average test results are

shown in (b). The image produced by the LCV method to match the target (a) is shown in (c).

1.3.1. Template matching

The first component of our system is the two stored basis views I ′ and I ′′. These are

rectangular bitmap images that contain gray-scale (or colour), pixel information of

the object without any additional background data. The images are obtained from

basis views chosen, as indicated earlier, so that the viewpoint from which the target

image IT is taken lies on the view sphere between or almost between the basis views

from which I ′ and I ′′ are taken. It is important not to choose a very wide angle

between the basis views since this can lead to I ′ and I ′′ belonging to different aspects

of the object and thus to landmark points being occludedb. Having selected the

two basis views, we pick a number of corresponding landmark points in particular

lying on discontinuity boundaries, edges and other prominent features. When the

appropriate number of landmarks have been selected we use constrained Delaunay

triangulation to produce consistent and corresponding triangular meshes of all the

images. The above processes may be carried out during an offline training stage and

are not examined here. The recognition system involves choosing the appropriate

LCV coefficients (ai, bj), synthesising an image IS and comparing it with the target

image IT , using some similarity or dissimilarity metric. The synthetic image of

the object is compared from (1.1) and (1.2) only over the region covered by the

object. However, in order to make a probabilistic interpretation of the match, the

bIt is still quite possible to synthesise novel images at wider angles and remove any self-occluded
triangles, although we do not address this problem here, see Ref. 14.



May 15, 2007 6:32 World Scientific Review Volume - 9.75in x 6.5in ObjectRecognitionLCV2

6 V. Zografos and B. F. Buxton

synthesised image must be superimposed on the background as shown in Fig. 1.1(d)

and all the pixels compared, such as in Ref. 19. The background must therefore be

known as it is in the CMU PIE database,20 or very simple (e.g. a uniform black

background as in the COIL-20 database21) or itself calculated from an appropriate

model. Making the comparison over all pixels belonging to both the foreground and

background in this way means that either a dissimilarity metric such as the sum

of squared differences (SSD) or a similarity measure such as the cross-correlation

coefficient c(IT , IS) may be used, without generating spurious solutions for example,

when the area of the foreground region covered by the object shrinks to zero.22 We

have used the latter because when applied to the whole image it is invariant to affine

photometric transformations.22 The choice of LCV coefficients is thus determined

by maximising the cross-correlation coefficient:

min
ai,bj

(1 − c(IT , IS)). (1.3)

Essentially we are proposing a flexible template matching system, in which the

template is allowed to deform in the LCV space until it matches the target image.

1.3.2. Optimisation

To find the LCV coefficients (ai, bj) we need to search a high-dimensional parameter

space using an efficient optimisation algorithm. For this purpose, we have chosen a

hybrid method, which combines a global (albeit slower) stochastic algorithm with a

local, direct search approach. The idea is that when we find a good-enough solution

with the stochastic method (usually after a pre-determined number of function

evaluations) and we are inside the basin of attraction of the optimal solution, we

can switch over to the local method to refine the results and quickly reach the

optimum.

The stochastic method used is a recent evolutionary, population-based optimi-

sation algorithm that works on real-valued coded individuals and is capable of han-

dling non-differentiable, nonlinear and multi-modal objective functions. It is called

Differential Evolution (DE) and was introduced by Storn and Price.23 Briefly, DE

works by adding the weighted difference between two randomly chosen population

vectors to a third vector, and the fitness of the solution represented by the resultant

is compared with that of another individual from the current population. In this

way, in DE we can deduce from the distances between the population vectors where

a better solution might lie, thereby making the optimisation self-organising. In ad-

dition, it is efficient in searching high-dimensional spaces and is capable of finding

promising basins of attraction22 early in the optimisation process without the need

for good initialisation.

For the local method, we have selected the algorithmc by Nelder and Mead,24

since it is very simple to implement and its use does not require calculation (or
cAlso known as the downhill simplex method or simplex method. It is not to be confused with
the simplex algorithm for the solution of the linear programming problem.
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approximation) of first or second order derivatives. A simplex is a polytope of

N+1 vertices in N dimensions with each vertex corresponding to a single matching

function evaluation. In its basic form (as described by Nelder and Mead) the simplex

is allowed to take a series of steps, the most common of which is the reflection of

the vertex having the poorest value of the objective. It may also change shape

(expansion and contraction) to take larger steps when inside a valley or flat areas,

or to squeeze through narrow cols. It can also change direction (rotate) when no

more improvement can be made in a current path. Since the simplex is a local, direct

search method, it can become stuck in local optima and therefore some modifications

of its basic behaviour are necessary. The first modification we introduced was the

ability of the simplex to restart whenever it stalled inside a local optimum. The

restart works as follows. After a specific number of function evaluations where there

has been no change in the value of the tracked optimum, we keep the best vertex

P0 and we generate n new vertices Pi using the formula:

Pi = P0 + λei, (1.4)

where ei are n random unit vectors, i = 1, .., n and λ is a constant that represents

the step-size. The idea is that by restarting the simplex close to the best point P0

we can escape a local optimum but without jumping too far away from the last good

solution that we have found. We soon discovered that any fixed step λ will eventually

become too big as the algorithm progresses, and the simplex will keep jumping in

and out of a good optimum without making any significant improvement for the

remaining function evaluations. We therefore allowed λ to reduce as the algorithm

progressed using the reduction schedule (typically met in Simulated Annealing):

λ = λ0C
(k−1) (1.5)

where k is the current function evaluation, and C is the “cooling rate”. In this way,

when the algorithm first stalls, it makes big jumps to attempt to escape from the

local optimum and as it progresses the jumps become smaller and smaller, so that

the algorithm tries to “burrow” deeper into the basin of attraction. As a result,

the algorithm keeps on improving the location of the optimum unlike the fixed-step

version which stalls early in the optimisation process. We can see both these two

methods illustrated in Fig. 1.3.

As mentioned above, the reason for using a hybrid approach as opposed to

the global, stochastic method alone, is that we can get very close to the optimum

solution in many fewer iterations. This is because evolutionary methods, although

they find a “fairly-good” solution early in the optimisation process, they spend the

remainder of the function evaluation “budget” carrying out small improvements in

the recovered optimum. If we therefore switch to the local, deterministic method

once a fairly good solution is recovered by the stochastic method, we can get to a

near-globally optimal solution much earlier. The comparison between a stochastic-

only and hybrid optimisation methods can be seen in Fig. 1.4.
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Fig. 1.3. Comparison between a fixed step simplex method (a) and a reducing step variant (b).
In the latter, the algorithm keeps on improving the object recognition.

1.4. Experimental results

We performed a number of experiments on synthetic and real images under varying

camera angle. The synthetic images were generated by taking 2d snapshots of a

3d object (a human head model) in front of a black background (see Fig. 1.2(a)).

Landmarks where manually selected amongst the vertices of the 3d object and

their projected positions were automatically calculated in the 2d images. This way

we could eliminate the approximation errors associated with manual placement of

corresponding landmarks in the two basis views and have control over the projection

model (in this case orthographic projection). Our synthetic dataset consisted of

a number of pose angles between ±14o about the vertical and ±10o about the

horizontal axes. The majority of the target views lay on the portion of the view-

sphere between the basis views, but in a few examples the system had to extrapolate

away from the great circle on the viewsphere between the basis views, in order to

recover the optimal coefficients. In terms of optimisation complexity, these synthetic

examples are considered quite simple since we are dealing with an object with diffuse

(Lambertian) reflectivity, which is fairly convex (i.e. not self-occluding, at least over

the range of angles we are testing), under constant lighting and distance from the

camera, and there is no approximation error on the landmarks of the two basis views.

In addition, the object is imaged against a constant background, which produces a

convex error surface with a wide basin of attraction. The optimum solution in such

cases can be easily and efficiently recovered. Therefore, we only needed to carry

out a few experiments on this dataset in order to determine whether the method

works in principle or not. In total, we ran 10 synthetic experiments and the results

are illustrated in Fig. 1.2(b). These results are very encouraging with the majority

of the experiments converging to the correct solution with a cross-correlation of

> 0.97. The only cases which failed to converge to the correct optimal solution

occurred when the target viewpoint was far from the great circle in view space
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between the basis views. In such cases, the LCV could not synthesise the target

view accurately indicating the need to use more than two basis views in order to

better represent that portion of the view-sphere.
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Fig. 1.4. The optimisation results for a DE-only test run (200 generations) compared with that
of a DE (100 generations)+Simplex test. It is obvious that we can obtain better results in the

latter case with many fewer iterations.

1.4.1. Experiments on the CMU PIE database

For the real image experiments, we used two publicly available datasets: the CMU

PIE database20 and the COIL-20 database.21 The CMU PIE contains examples

of facial images from various individuals across different pose, illumination and

expression conditions. In our tests, we used pose variation subsets, making sure

the manually chosen landmarks were visible in both basis views (see Fig. 1.1). We

constructed LCV models from 10 individuals using as basis views the left and right

images (c29, c05 ) of each individual with a natural expression (see Fig. 1.8(a)).

The face, once synthesised, was then superimposed onto the background which is

given separately in the database, and the resulting image was compared with a test,

target view. Comparisons were carried out against the images of the 10 individuals

in the database, while attempting to detect poses from −45o,−22.5o, 0o, 22.50, 45o

about the vertical and a limited range about the horizontal axes (images c09 and

c07 ).

In total we carried out 700 experiments across pose and constructed a 10 ×

10 × 7 “confusion array” of model×image×pose. Each 10×10 pose-slice of this

array contains information about the recognition responses (cross-correlation) of

our tests, the highest being along the main diagonal, where each individual’s model

is correctly matched to that individual’s image. The recognition response should

be less when comparing a specific model with images of other individuals. This

behaviour, averaged over pose can be seen as a “heatmap” in Fig. 1.5(a) whilst

the pose-dependent recognition rate and recognition response (averaged over the 10



May 15, 2007 6:32 World Scientific Review Volume - 9.75in x 6.5in ObjectRecognitionLCV2

10 V. Zografos and B. F. Buxton

models) are shown in Fig. 1.5(b) and (c) respectively. We can see from the high

values (white) along the leading diagonal of the averaged “heatmap” Fig. 1.5(a)

that for all 10 experiments, the calculated cross-correlation c(IS(i), IT (j)), where

IS(i) is the image synthesised from the model of the ith object (i.e. its basis views)

and IT (j) a target image of the jth object, is generally greatest when i = j. The

response usually falls off for i 6= j, with some individuals being more similar than

others (grey areas in the heatmap). For the average recognition rate, we checked

to see if the highest response corresponded to a correct match between the model

and an image of that individual at every pose. As expected, we had the highest

recognition rates at the basis views (±22.5o) when no interpolation is necessary,

slightly lower rates when we had to interpolate to find the frontal view (0o) and

still lower rates when extrapolation was required to synthesise the correct view at

(±45o). The same reduction in recognition rate also applies to pose variation about

the vertical axis (c07,c09 ). Examination of the average recognition response in

Fig. 1.5(c) shows the expected “M-Shaped” curve, with the highest response being

at the basis views, slightly lower for the frontal image (interpolation) and still lower

for images taken from “outside” the basis views (extrapolation). The solid line

shows the response for the tests in the leading diagonal of the confusion array (i.e.

where the correct solutions lie) and the dashed line shows the maximum response in

each column of the image×pose slice of the confusion array. Where there are large

discrepancies between the solid line and the dashed-line, the recognition rate will

be low, whilst there will be no difference if the recognition rate is 100%. Thus, at

the two basis views where we have a high recognition rate, there is little difference

between the solid and dashed lines, there is a slight difference for the frontal image

and a bigger difference for the target images where we need to extrapolate beyond

the basis views.

In general, the results are quite pleasing with the correct person identified the

vast majority of times when the target view was between the basis views and no

extrapolation was required. It is important to note that the recognition rate is not

100% at the two basis views as we might have expected it to be. There are many

reasons for this, mainly the fact that we have carried out only 10 experiments per

individual per pose, and therefore a single failure reduces the recognition rate to

90%. Also, the landmarking of the face images (and other objects to be discussed

later in the COIL-20 database) is quite sparse (Fig. 1.1), resulting in particular

errors around the extremal boundaries of the face images. Additionaly, the chosen

objects (facial images) are quite similar to each other (facial features, skin tone, hair

colour and so on) and in this case, unlike for the synthetic examples, we are dealing

with a much more complex optimisation problem, partially caused by the cluttered

background.22 The lower than expeced recognition rates thus are a combination

of the sparse landmarking, the limited number of experiments and the occassional

failure of the optimisation algorithm to converge to the correct solution. It should

be possible to increase the recognition rates by using more landmark points and
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views during the modelling stage, constructing models for a larger set of objects

and thus making additional tests against more target images, possibly taken from a

greater number of viewpoints, and also initialising the optimisation algorithm closer

to the basin of attraction of the optimal solution.
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Fig. 1.5. A heatmap (a) showing the entries in the confusion array averaged over pose. (b) shows
the recognition rate as a function of pose angle averaged over all models and (c) the recognition
response at the same angles as in (b). Solid symbols are used for the best match and open squares
for the correct match with i=j.

1.4.2. Experiments on the COIL-20 database

The COIL-20 database contains examples of 20 objects imaged under varying pose

(horizontal rotation around the view-sphere at 5o intervals) against a constant

background, with the camera position and lighting conditions kept constant (see

Fig. 1.8(b)). In this case, we created two “confusion arrays”, one using the cross-

correlation coefficient and the other using the negative of the mutual information:

M(IS , IT ) = −
∑

p(IS , IT ) log
p(IS , IT )

p(IS)p(IT )
, (1.6)
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where p(IS , IT ) is the joint p.d.f. and p(IS), p(IT ) the marginal p.d.f.s of the synthe-

sised and target images IS and IT respectively. In these calculations, the probability

distributions were approximated by histograms computed from the images, akin to

Ref 25. Mutual information was used to see if there was any advantage in using

a matching measure that is known not to be dependent on a simple, direct map-

ping between the pixel attributes. For the mutual information measure, a low score

(i.e. a negative number of larger magnitude) indicates a better match. In these

experiments, we selected two basis views from images of half of the objects and

tested the matching across all objects both those modelled (here labeled 1-10) and

unmodelled (here labeled 11-20) and across 7 poses. The image confusion array

was thus of dimensions 10×20×7 (model×image×pose). For the pose samples, we

selected the basis images at −20o and 20o about the frontal view at 0o, and tested

between −30o to 30o at 10o intervals. As a result, we have 3 images where we need

to interpolate between the basis views (−10o, 0o, 10o) and two where extrapolation

is required (−30o, 30o).

In total, we carried out 2800 experiments, 1400 for each of the error measures

c(IS(i), IT (j)) and M(IS(i), IT (j)). The results can be seen in Fig. 1.9 and Fig. 1.10.

On average, the cross-correlation outperforms the mutual information measure. The

results are also better than those obtained for the CMU PIE database since we have

less similar objects, a much easier optimisation problem and also we have carried

out more experiments. What is interesting to note from Fig. 1.9 is how much more

distinctive the leading diagonal is in the heatmaps for the cross-correlation (b) than

that for the mutual information (a). This indicates that the true positive responses

are quite distinct from those of the true negatives and that there is less chance for

miss-recognitions. The same conclusion may be drawn from the second half of the

heatmap showing the scores obtained for matching the models (1-10) to images of

the other objects (11-20). In this case, there are no very good matches to any of

the models and all of the images are likely to be rejected as unrecognised. The

point that miss-recognition is unlikely is also reinforced by (c),(d),(e) and (f) in

Fig. 1.10 which show the matching scores and recognition rates at different pose

angles, averaged over the modelled objects as in Fig. 1.5(b) and (c).

Furthermore, the heatmaps (a) and (b) in Fig. 1.10 show the average response

over all the modelled objects at different pose angles. In the case of mutual infor-

mation, we would expect lower scores (i.e. valley) at a pose of 0o, which actually

occurs, and minima at the basis views at ±20o which do not occur. This is perhaps

because when reconstructing at one basis view, there are some “ghosting” (Fig. 1.6)

effects from the other basis view that affect pixel intensities even though the geome-

try is correct. It seems that mutual information is more sensitive to this effect than

cross-correlation. Also we notice in Fig. 1.10(a) and (b) some spreading of high

and low response values across pose. This spreading is very significant and explains

how well a model matches to other objects (including itself) at different poses. For

example, a generic looking object (e.g. a box) that can easily “morph” under the
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(a) (b)

Fig. 1.6. This figure shows the ghosting effects that might occur from warping the intensities
of the two basis views. (a) is the target view that we are trying to reconstruct and (b) is the
synthesised image. As we can see the geometry is correct but there are some ghosting effects in

(b) from one of the basis views, in particular just behind the eye and behind the wing of the image
of the toy duck. This usually occurs when a few triangles cover large, detailed areas of the image.
This problem can be usually remedied by using more landmark points, and thus triangles, in those

areas.

LCV mapping (1.1) to match the shape of the images of many objects from the

database, will show a spread of high values (for mutual information) across pose

angles. On the other hand, a complex object with unique geometry and intensity

will show a spread of low values (again for mutual information).
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Fig. 1.7. Barplots showing the scores per test in the main diagonal, arranged by pose, both for

the mutual information (a) and the cross-correlation (b). A “good” measure should exhibit an
almost constant value, such as the cross-correlation in (b).

We finally include two bar plots comparing the cross-correlation and mutual

information measures (Fig. 1.7). These show the response values per test arranged

by pose and model, where the model is chosen to be the correct one for the target

image, i.e. along the leading diagonal of the confusion array. What we must note

here is that an “appropriate” matching measure should give consistently good re-

sponses throughout all the tests, both as the viewing angle of the target images for a

given object changes and as we change from object to object, resulting in a uniform

distribution of the response values. This is in fact the case for the cross-correlation
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(a)

(b)

Fig. 1.8. Image samples from the CMU PIE (a) and COIL-20 (b) databases.

(b) for which the distribution of the matching scores appears quite uniform, but

not so for the mutual information (a), a further indication that cross-correlation

is the appropriate matching metric for object recognition by image-based template

matching.

1.5. Conclusion

We have shown how the linear combination of views (LCV) method may be used in

view-based object recognition. Our approach involves synthesising intensity images

using LCV and comparing them to the target, scene image. The LCV coefficients

for the synthesis are recovered by a hybrid optimisation algorithm, comprised of

differential evolution23 combined with the simplex method.24 Experiments on both

synthetic and real data from the CMU PIE and COIL-20 databases, demonstrate

that the method works well for pose variations especially those where the target

view lies between, or almost between the basis views. DE plays an important role

in our method, by searching efficiently the high-dimensional, LCV space. Such

an algorithm can narrow the search space to a promising area within the basin of

attraction of a good solution, in which a local optimisation method can be used

for finding an accurate solution. For objects from the COIL database, we also

compared the use of cross-correlation and mutual information for intensity-based
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Fig. 1.9. Analysis of the results obtained from experiments on the COIL-20 database using cross-

correlation and mutual information error measures. (a) shows the 10x20 matrix of responses
averaged over the pose for the mutual information measure and (b) shows similar results for the
cross-correlation. It is obvious that in the case of the cross-correlation (b) the resulting leading

diagonal in the first half of the heatmap is more distinctive than that of the mutual information.

template matching. We have seen from our experiments on real data that the cross-

correlation slightly outperforms the mutual information measure. This is possibly

because of the type of error surfaces it produces especially around the basin of

attraction.

Additional work is required, however. In particular, we would like to reformulate

(1.1) by using the affine tri-focal tensor and introducing the appropriate constraints

in the LCV mapping process. Formulating (1.1) in term of individual 3d transforms

might also help bound the range of the LCV coefficients and make initialisation of

the optimisation algorithm more intuitive. Furthermore, we would like to introduce

probabilistic weights on the coefficients as prior information about the range of

likely views and formulate a Bayesian inference mechanism. This, we believe, will

greatly aid the recognition process. At this stage we have only addressed extrinsic,

viewpoint variations, but we have indicated how it should be possible to include
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Fig. 1.10. Some additional results from the COIL-20 database. Plots (a) and (b) show the 10x10
matrix of responses averaged over the modelled objects for the mutual information and cross-

correlation measures respectively. (c) and (d) show the average recognition response for the two
error measures and (e) and (f) the similarly averaged recognition rates.

intrinsic, shape variations (see for example Ref. 10.) and lighting variations on the

image pixels.
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